U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Status:
US Animal Drug
Source:
GREEN BOOK:FLUMETHASONE ACETATE [GREEN BOOK]
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)

Conditions:

Flumethasone 21-acetate is an anti-inflammatory corticosteroid. It has 300 times greater anti-inflammatory activity and 677 times greater capacity to promote liver glycogen deposition than hydrocortisone. It has anti-rheumatic potency 31 times higher than cortisol.
Status:
US Previously Marketed
First approved in 1969

Class (Stereo):
CHEMICAL (ABSOLUTE)



Flumethasone or flumetasone is a corticosteroid and is an agonist of a glucocorticoid receptor with anti-inflammatory, antipruritic and vasoconstrictive properties. Flumethasone is often formulated as the pivalic acid ester, flumetasone pivalate. The immune system is suppressed by corticosteroids due to a decrease in the function of the lymphatic system, a reduction in immunoglobulin and complement concentrations, the precipitation of lymphocytopenia, and interference with antigen-antibody binding. Flumethasone binds to plasma transcortin, and it becomes active when it is not bound to transcortin. Flumethasone is used for the treatment of contact dermatitis, atopic dermatitis, exczema, psoriasis, diaper rash and other skin condition.
mixture
Status:
US Approved OTC
Source:
21 CFR 333.110(d) first aid antibiotic:ointment neomycin sulfate
Source URL:
First approved in 1951
Source:
Mycifradin by Upjohn
Source URL:

Class:
MIXTURE



Neomycin is an aminoglycoside antibiotic found in many topical medications such as creams, ointments, and eye drops. In vitro tests have demonstrated that neomycin is bactericidal and acts by inhibiting the synthesis of protein in susceptible bacterial cells. It is effective primarily against gram-negative bacilli but does have some activity against gram-positive organisms. Neomycin is active in vitro against Escherichia coli and the Klebsiella-Entero. Topical uses include treatment for superficial eye infections caused by susceptible bacteria (used in combination with other anti-infective), treatment of otitis externa caused by susceptible bacteria, treatment or prevention of bacterial infections in skin lesions, and use as a continuous short-term irrigant or rinse to prevent bacteriuria and gram negative rod bacteremia in bacteriuria patients with indwelling catheters. May be used orally to treat hepatic encephalopathy, as a perioperative prophylactic agent, and as an adjunct to fluid and electrolyte replacement in the treatment of diarrhea caused to enter pathogenic E. coli (EPEC). Neomycin sulfate has been shown to be effective adjunctive therapy in hepatic coma by reduction of the ammonia forming bacteria in the intestinal tract. The subsequent reduction in blood ammonia has resulted in neurologic improvement. To reduce the development of drug-resistant bacteria and maintain the effectiveness of Neomycin Sulfate Oral Solution and other antibacterial drugs, susceptible bacteria should use Neomycin Sulfate Oral Solution only to treat or prevent infections that are proven or strongly suspected to be caused. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy. Neomycin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site near nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes
Polymyxin B is a lipopeptide antibiotic isolated from Bacillus polymyxa. Its basic structure consists of a polycationic peptide ring and a tripeptide side chain with a fatty acid tail. Polymyxin B is a mixture of at least four closely related components, polymyxin B1 to B4, with polymyxin B1 and B2 being the two major components. Polymyxin B acts on Gram-negative bacteria by interacting with lipopolysaccharide (LPS) of the outer membrane and destabilizing it. Polymyxin B is indicated for the treatment of many bacterial diseases such as meningeal infections, urinary tract infections and bacteremia.
Status:
US Previously Marketed
Source:
Percorten by Ciba
(1940)
Source URL:
First approved in 1939

Class (Stereo):
CHEMICAL (ABSOLUTE)



Desoxycorticosterone pivalate (DOCP) is a mineralocorticoid hormone and an analog of desoxycorticosterone. DOCP is a long-acting ester of desoxycorticosterone acetate (DOCA) which is recognized as having the same qualitative effects as the natural mineralocorticoid hormone aldosterone. It’s used as Percorten-V for replacement therapy for the mineralocorticoid deficit in dogs with primary adrenocortical insufficiency. Percorten-V is only available in the U.S., Canada, Australia and recently, Denmark. Percorten was originally developed for the treatment of Addison's disease in humans but the demand for it decreased significantly once Florinef was available. Unaware that their product was being prescribed “off-label” for the treatment of canine Addison’s Disease and faced with a decreased demand for Percorten, the manufacturer *almost* discontinued production until the veterinary community rose up and voiced their distress. Field trials were run and the FDA approved the use of Percorten-V (the "v" is for veterinary). DOCP like other adrenocorticoid hormones is thought to act by controlling the rate of synthesis of proteins. It reacts with receptor proteins in the cytoplasm to form a steroid-receptor complex. This complex moves into the nucleus, where it binds to chromatin that result in genetic transcription of cellular DNA to messenger RNA. The steroid hormones appear to induce transcription and synthesis of specific proteins, which produce the physiologic effects seen after administration. The most important effect of DOCP is to increase the rate of renal tubular absorption of sodium. This effect is seen most intensely in the thick portion of the ascending limb of the loop of Henle. It also increases sodium absorption in the proximal convoluted tubule but this effect is less important in sodium retention. Chloride follows the sodium out of the renal tubule. Another important effect of DOCP is enhanced renal excretion of potassium. This effect is driven by the resorption of sodium that pulls potassium from the extracellular fluid into the renal tubules, thus promoting potassium excretion.